 Baki, M., & Çekmez, E. (2012). Prospective elementary mathematics teachers’ understandings about the formal definition of limit. Turkish Journal of Computer and Mathematics Education, 3(2), 8198. [Google Scholar]
 Balcı, M. (2016). Matematik analiz 1. Ankara: Palme Yayıncılık. [Google Scholar]
 Barak, B. (2007). Diagnosis of misconceptions about limit concept (Unpublished master’s thesis). Balıkesir University, Balıkesir. [Google Scholar]
 Brasell, H. M. & Rowe, M. B. (1993). Graphing skills among high school physics students. School Science and Mathematics, 93(2), 6370. [Google Scholar]
 Çepni, S. (2012). Araştırma ve proje çalışmalarına giriş (6. Baskı). Trabzon: Celepler Matbaacılık. [Google Scholar]
 Delice, A., & Sevimli, E. (2012). An investigating calculus students’ solution processes of integral volume problems in terms of thinking abilities. Marmara University Atatürk Education Faculty Journal of Educational Sciences, 36(36), 95113. [Google Scholar]
 Demir, H. (2008). Teori ve temelleri ile analiz I (1. Baskı). Ankara: Pegem Akademik Yayıncılık. [Google Scholar]
 Dereli, A. B. (2015). The identification the errors and misconceptions of the elementary mathematics teacher candidates' related to the sequences and series (Unpublished master’s thesis). İnönü University, Malatya. [Google Scholar]
 Doruk, M., & Kaplan, A. (2018). Preservice mathematics teachers’ understanding of fundamental calculus definitions. İnönü University Journal of the Faculty of Education, 19(3), 117140. doi: 10.17679/inuefd.298371 [Google Scholar] [Crossref]
 Driver, R., & Easley, Y. (1978). Pupils and paradigms: a review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 6184. [Google Scholar]
 Gökçek, T., & Açıkyıldız, G. (2016). Preservice mathematics teachers’ errors related to derivative. Turkish Journal of Computer and Mathematics Education, 7(1), 112141. doi: 10.16949/turcomat.14647 [Google Scholar] [Crossref]
 Göktaş, H., & Erdoğan, A. (2016). Prospective mathematics teachers’ conceptual structure about continuity. Journal of Research in Education and Teaching, 5(3), 208217. [Google Scholar]
 Gür, H., & Barak, B. (2007). The erroneous derivative examples of eleventh grade students. Educational Sciences: Theory & Practice, 7(1), 453480. [Google Scholar]
 Jones, K. (2000). The student experience of mathematical proof at university level. International Journal of Mathematical Education in Science and Technology, 31(1), 5360. doi:10.1080/002073900287381 [Google Scholar] [Crossref]
 Kabaca, T. (2011). Matematiğin deneysel gelişimi ve öğretimindeki uzantısı: analiz dersi örneği. Pamukkale University Journal of Education, 30(30), 173177. [Google Scholar]
 Karasar, N. (2019). Bilimsel araştirma yöntemi: kavramlar, ilkeler ve teknikler (34. Baskı). Ankara: Nobel Yayın Dağıtım. [Google Scholar]
 Kertil, M. (2014). Preservice elementary mathematics teachers' understanding of derivative through a model development unit (Unpublished doctoral dissertation). Middle East Technical University, Ankara. [Google Scholar]
 Koparan, T., Yıldız, C., Köğce, D., & Güven, B. (2010). The effect of conceptual change approach on 9th grade students’ achievement. Procedia Social and Behavioral Sciences, 2(2), 39263931. doi:10.1016/j.sbspro.2010.03.618 [Google Scholar] [Crossref]
 Kramarski, B. (2004). Making sense of graphs: Does metacognitive instruction make a difference on students’ mathematical conceptions and altenative conceptions? Learning and Instruction, 14(6), 593619. doi: 10.1016/j.learninstruc.2004.09.003 [Google Scholar] [Crossref]
 Merriam, S. B. (1988). Case study research in education: a qualitative approach. San Francisco (C.A): JosseyBass. [Google Scholar]
 Mevarech, Z. R. & Kramarsky, B. (1997). From verbal descriptions to graphic representations: Stability and change in students’ alternative conceptions. Educational Studies in Mathematics, 32, 229263. doi:10.1023/A:1002965907987 [Google Scholar] [Crossref]
 Miles, M. & Huberman, M. (1994). An expanded source book qualitative data analysis (2nd Ed.). Thousand Oaks (CA): Sage Publications. [Google Scholar]
 Özmantar, M. F., Bingölbali, E. & Akkoç, H. (2013). Matematiksel kavram yanılgıları ve çözüm önerileri. Ankara: Pegem Akademi Yayıncılık. [Google Scholar]
 Patton, M. Q. (2014). Nitel araştırma ve değerlendirme yöntemleri. Ankara: Pegem Akademi. [Google Scholar]
 Sierpinska, A. (1992). On understanding the notion of function. In Harel. G. & Dubinsky, E. (Eds.), MAA Notes and Reports Series: 2558. [Google Scholar]
 Sofronas, K. S., DeFranco, T.C., Vinsonhaler, C., Gorgievski, N., Schroeder, L., & Hamelin, C. (2011). What does it mean for a student to understand the firstyear calculus? Perspectives of 24 experts. The Journal of Mathematical Behavior, 30(2), 131148. doi:10.1016/j.jmathb.2011.02.001 [Google Scholar] [Crossref]
 Tall, D. (1992). The transition to advanced mathematical thinking: functions, limits, infinity and proof. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning. New York: Macmillan. [Google Scholar]
 Ubuz, B.(1999). Genel matematikde calculus öğrenci hataları. Matematik Dünyası, 8, 911. [Google Scholar]
 Weber, K. (2001). Student difficulty in constructing proof: the need for strategic knowledge. Educational Studies in Mathematics, 48(1), 101–119. doi:10.1023/A:1015535614355 [Google Scholar] [Crossref]
 Yıldırım, A. & Şimşek, H. (2018). Sosyal bilimlerde nitel araştirma yöntemleri (11. Baskı). Ankara: Seçkin Yayıncılık. [Google Scholar]
 Yıldız, C., Baki, A., Aydın, M., & Köğce, D. (2010). Development of materials in instruction of decimals according to constructivist approach. Procedia Social and Behavioral Sciences, 2(2), 36603665. doi: 10.1016/j.sbspro.2010.03.569 [Google Scholar] [Crossref]
 Yıldız, C., Taşkın, D., Aydın, M., & Köğce, D. (2011). The effect of instructional materials on decimal fractions to the conceptual change. Procedia Social and Behavioral Sciences, 15, 899903. doi:10.1016/j.sbspro.2011.03.208 [Google Scholar] [Crossref]
 Yıldız, C., Taşkın, D., Köğce, D., & Aydın, M. (2011). The effect of instructional materials developed in relation to decimal fractions on success. Procedia Social and Behavioral Sciences, 15, 859863. doi: 10.1016/j.sbspro.2011.03.199 [Google Scholar] [Crossref]
 Yin, R. K. (1994). Case study research design and methods (2nd Ed.). Thousand Oaks (CA): Sage. [Google Scholar]
 Zandieh, M. J. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. CBMS Issues in Mathematics: Research in Collegiate Mathematics Education, 4(8), 103127. [Google Scholar]
