International Association of Educators   |  ISSN: 1949-4270   |  e-ISSN: 1949-4289

Original article | Educational Policy Analysis and Strategic Research 2019, Vol. 14(3) 129-153

An examination of educational inputs with the data envelopment analysis: The example of ICILS 2013

Durmuş Özbaşı & Gökhan Ilgaz

pp. 129 - 153   |  DOI: https://doi.org/10.29329/epasr.2019.208.7   |  Manu. Number: MANU-1905-27-0001.R1

Published online: September 29, 2019  |   Number of Views: 88  |  Number of Download: 448


Abstract

The aim of this study was to determine how efficiently different countries, comparatively, use educational inputs, which are considered to affect information and communication technology literacy. The study was designed using the survey model. The study was conducted with data belonging to 21 countries participating in the International Computer and Information Literacy Study (ICIL) 2013. The data of this study were grouped as educational inputs and educational outputs. The educational inputs were the ratio of school size and teachers, the ratio of school size and number of computers, the ratio of school size and number of computers available for students, the ratio of school size and number of computers with access to internet/World Wide Web, and the ratio of school size and number of smartboards. The educational outputs were determined by the average student grades obtained in ICILS 2013. The data were analysed with data envelopment analysis. The research results revealed that relatively, Australia, Canada (Newfoundland and Labrador, Ontario), Denmark, Korea, and Norway were the countries with total efficiencies. It was determined that with the exception of the Czech Republic, all the countries without total efficiencies had the characteristic of increasing returns to scale. According to the projections that were put forward for countries to become totally efficient, the most reduction recommendations were received for the inputs for ratio of school size and teachers by Argentina (Buenos Aires); for ratio of school size and number of computers, ratio of school size and number of computers available for students, and ratio of school size and number of computers with access to internet/World Wide Web by Turkey; and for ratio of school size and smartboards by Thailand. That is to say, these countries were the ones least able to use these inputs efficiently.

Keywords: Educational inputs, educational outputs, data envelopment analysis, computer and information literacy


How to Cite this Article?

APA 6th edition
Ozbasi, D. & Ilgaz, G. (2019). An examination of educational inputs with the data envelopment analysis: The example of ICILS 2013 . Educational Policy Analysis and Strategic Research, 14(3), 129-153. doi: 10.29329/epasr.2019.208.7

Harvard
Ozbasi, D. and Ilgaz, G. (2019). An examination of educational inputs with the data envelopment analysis: The example of ICILS 2013 . Educational Policy Analysis and Strategic Research, 14(3), pp. 129-153.

Chicago 16th edition
Ozbasi, Durmus and Gokhan Ilgaz (2019). "An examination of educational inputs with the data envelopment analysis: The example of ICILS 2013 ". Educational Policy Analysis and Strategic Research 14 (3):129-153. doi:10.29329/epasr.2019.208.7.

References
  1. Angrist, J. D. & Lavy, V. (1999). Using Maimonides' rule to estimate the effect of class size on scholastic achievement. The Quarterly Journal Of Economics, 114(2), 533-575. [Google Scholar]
  2. Aslan, Ş. (2007). Performans ölçümünde kıyaslama yöntemi olarak veri zarflama analizinin kullanımı: Türkiye şeker fabrikaları örneği. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 21(1), 383-396.  [Google Scholar]
  3. Banker R.D., Charnes, A., & Cooper, W.W. (1984). Some models for estimating technical and scale ınefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092. [Google Scholar]
  4. Charnes, A., Cooper, W. W., Lewin, A. Y., & Seiford, L. M. (1994). Data envelopment analysis: Theory. methodology and applications. Kluwer Academic Publishers. [Google Scholar]
  5. Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. [Google Scholar]
  6. Coleman, J.S., Campbell, E.Q., Hobson, C.J., McPartland, F., Mood, A.M., Weinfeld, G.D., & York. R.L. (1966). Equality of educational opportunity. Washington, DC: U.S. Government Printing Office.  [Google Scholar]
  7. Cooper, W.W., Seiford, L.M., & Tone, K., (2000). Data envelopment analysis. Kluwer Academic Publishers. [Google Scholar]
  8. Cooper, W. W., Li, S., Seiford, L. M., Tone, K., Thrall, R. M., & Zhu, J. (2001). Sensitivity and stability analysis in DEA: Some recent developments. Journal of Productivity Analysis, 15(3), 217-246. [Google Scholar]
  9. Depren, Ö. (2008). Veri zarflama analizi ve bir uygulama. (Unpublished master’s thesis). Istanbul: Yıldız Technical University.  [Google Scholar]
  10. Deveci Kocakoç, I. (2003). Veri zarflama analizindeki ağırlık kısıtlamalarının belirlenmesinde analitik hiyerarşi sisteminin kullanımı. D.E.Ü.İ.İ.B.F. Dergisi, 18(2), 1-12.  [Google Scholar]
  11. Doğan, N.Ö. (2015). VZA süper etkinlik modelleri ile etkinlik ölçümü: Kapadokya’da faaliyet gösteren balon işletmeleri üzerine bir uygulama. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 29(1), 187-203. [Google Scholar]
  12. Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., & Shale, E. A. (2001). Pitfalls and protocols in DEA. European Journal of Operational Research, 132(2), 245-259. [Google Scholar]
  13. EMO, 2017. EMO bilgi ve iletişim teknolojileri raporu-2016: Bilgi ve iletişim teknolojileri yoksulluğu. TMMOB Elektrik Mühendisleri Odası Bilgi ve İletişim Teknolojileri Komisyonu, Yayın No:GY/2017/677, Ankara.  [Google Scholar]
  14. Eurydice, 2011. Avrupa’da okullarda BIT aracılığıyla öğrenme ve yenilik üzerine temel veriler 2011. Eğitim, Görsel-İşitsel ve Kültür İdari Ajansı (EACEA P9 Eurydice), 2011. [Google Scholar]
  15. Fraenkel, J. R., & Wallen, N. E. (2006). How to design and evaluate research in education. Mc Graw Hill Higher Education. New York, NY. [Google Scholar]
  16. Golany, B., & Roll, Y. (1989). An application procedure for DEA. Omega, 17(3), 237-250. [Google Scholar]
  17. Gökgöz, F. (2009), Veri zarflama analizi ve finans alanına uygulanması, Ankara Üniversitesi Siyasal Bilgiler Fakültesi, Yayın No: 597, Ankara. [Google Scholar]
  18. Günay, B. (2015). BİST de işlem gören kobi gıda işletmelerinin veri zarflama analizi yöntemi ile etkinliklerinin ölçülmesi. Akademik Bakış Uluslararası Hakemli Sosyal Bilimler Dergisi, 47, 16-34. [Google Scholar]
  19. Kale, S. (2009). Veri zarflama analizi ile banka şubelerinin performansının ölçülmesi. (Unpublished PhD Thesis). Istanbul: Kadir Has University. [Google Scholar]
  20. Karahan, A. , & Özgür, E. (2009). Hastanelerde Performans Yönetim Sistemi Ve Veri Zarflama Analizi. Ankara: Nobel Yayın Dağıtım. [Google Scholar]
  21. Karakütük, K., Tunç, B., Bülbül, T., Özdem, G., Taşdan, M., Çelikkaleli, Ö., & Bayram, A. (2012). Türkiye’de genel ortaöğretim okullarının büyüklüğüne göre fiziksel koşulların yeterliği. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 45(2), 183-204. [Google Scholar]
  22. Kecek, G, (2010). Veri zarflama analizi teori ve uygulama örneği. Ankara: Siyasal Yayın.   [Google Scholar]
  23. Kenny, L. (1982). Economies of scale in schooling. Economics of Education Review, 2(1), 1-24 [Google Scholar]
  24. Kılıç, Y. (2015). Türkiye’de ortaöğretim kurumlarında okul büyüklüğü ve disiplin ilişkisine dair amprik bir çalışma. Kuram ve Uygulamada Eğitim Yönetimi, 21(1), 51-68. [Google Scholar]
  25. Kıncal, R.Y. (2006) Eğitim bilimine giriş. Ankara: Nobel Akademik Yayıncılık [Google Scholar]
  26. Kıran, B. (2008). Kalkınmada öncelikli illerin ekonomik etkinliklerinin veri zarflama analizi yöntemi ile değerlendirilmesi. (Yayınlanmamış Yüksek Lisans Tezi). Çukurova Üniversitesi Sosyal Bilimler Enstitüsü. [Google Scholar]
  27. Kirkpatrick, H., & Cuban, L. (1998). Should we be worried? What the research says about gender differences in access, use, attitudes, and achievement with computers. Educational Technology, 38(4), 56-61. [Google Scholar]
  28. Kutlar, A., & Babacan, A. (2008). Türkiye’deki kamu üniversitelerinde CCR etkinliği-ölçek etkinliği analizi: DEA tekniği uygulaması. Kocaeli Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 15(1), 148-172. [Google Scholar]
  29. Lorcu, F., (2008). Data envelopment analysis (DEA) to evaluate the effectiveness of Turkey and the European Union countries in the health field. (Unpublished PhD Thesis). Istanbul University. [Google Scholar]
  30. Mirzapour, A. (2014). Veri zarflama analizinde yeni karar destek sistemi. (Yayınlanmamış Doktora Tezi), Ankara: Gazi Üniversitesi Fen Bilimleri Enstitüsü. [Google Scholar]
  31. Önsoy, E. (2013). Veri Zarflama analizi kullanılarak kargo şirketlerinin performanslarının değerlendirilmesi. (Yüksek Lisans Tezi). Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara. [Google Scholar]
  32. Ray, S.C. (2004). Data envelopment analysis theory and techniques for economics and operations research. UK: Cambridge University Press. [Google Scholar]
  33. Roblyer, M.D. (2006). Integrating educational technology into teaching. (5th. ed.). Upper Saddle River, NJ: Pearson Merrill Prentice Hall. [Google Scholar]
  34. Noll, R.G., Older-Aguilar, D., Ross, R.R. & Rosston, G. L. (2001) Critical path analysis of California’s S&T education system: bridging the digital divide, (The Digital Divide: Definitions, Measurement, And Policy Issues Edited By Roger Noll), A report prepared for the California Council on Science and Technology, March 2001. [Google Scholar]
  35. Seyrek, İ. H., & Ata, H. A. (2010). Veri zarflama analizi ve veri madenciliği ile mevduat bankalarında etkinlik ölçümü. Journal of BRSA Banking & Financial Markets, 4(2), 67-84. [Google Scholar]
  36. SRI. 2002. The integrated studies of educational technology: professional development and teachers' use of technology," SRI International Report. [Google Scholar]
  37. Taheri, H., & Ansari, S. (2013). Measuring the relative efficiency of cultural-historical museums in Tehran: DEA approach. Journal of Cultural Heritage, 14(5), 431-438. [Google Scholar]
  38. Tokupunar, S. (2015). Veri zarflama analizi ile girdi çıktı tablosu kullanılarak sektörel etkinliğin belirlenmesi: Türkiye örneği, (Yayınlanmamış yüksek lisans tezi), Ankara: Gazi Üniversitesi Sosyal Bilemler Enstitüsü. [Google Scholar]
  39. Turgut, M. F., & Baykul, Y. (2010). Eğitimde ölçme değerlendirme. Ankara: Pegem Yayıncılık. [Google Scholar]
  40. Tyler, R.W. (1950) Basic principles of curriculum and ınstruction. Chicago: University of Chicago. [Google Scholar]
  41. Ulucan, A. (2002). ISO 500 şirketlerinin etkinliklerinin ölçülmesinde veri zarflama analizi yaklaşımı: Farklı girdi çıktı bileşenleri ve ölçeğe göre getiri yaklaşımları ile değerlendirmeler, Siyasal Bilgiler Fakültesi Dergisi, 57(2), 185-202. [Google Scholar]
  42. Usluel, Y. K. (2007). Can ICT usage make a difference on student teachers' information literacy self-efficacy. Library & Information Science Research, 29(1), 92-102. [Google Scholar]
  43. Walberg, H. J. (1993). Losing local control of education: Cost and quality implications. Policy Documents, No:59, The Heartland Institute. Retrieved June 6, 2019 Retrieved from http://heartland.org/policy-documents/losing-local-control-educationcost-and-quality-implications [Google Scholar]
  44. Yalçın, S., & Tavşancıl, E. (2011). Türk öğrencilerin PISA başarı düzeylerinin veri zarflama analizi ile yıllara göre karşılaştırılması. (Yayınlanmamış yüksek lisans tezi). Ankara University, Ankara. [Google Scholar]
  45. Yıldız, Z. (2014). Türkiye'deki devlet üniversite enstitülerinin veri zarflama analizi uygulaması ile etkinliğinin ölçümü. (Yayınlanmamış yüksek lisans tezi). Cumhuriyet Üniversitesi Sosyal Bilimler Enstitüsü. [Google Scholar]
  46. Yu, Y., & Wen, Z. (2010), Evaluating China’s urban environmental sustainability with data envelopment analysis. Ecological Economics, 69, 1748-1755 [Google Scholar]
  47. Zhu, J. (2009). Quantitative models for performance evaluation and benchmarking data envelopment analysis with spreadsheets, Springer, Second Edition, USA. [Google Scholar]